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Abstract

The linear radiative transfer equation, a partial differential equation for the radiation intensity uðx; sÞ, with independent
variables x 2 D � Rn in the physical domain D of dimension n ¼ 2; 3; and angular variable s 2 S2 :¼ fy 2 R3 : jyj ¼ 1g, is
solved in the nþ 2-dimensional computational domain D� S2. We propose an adaptive multilevel Galerkin finite element
method (FEM) for its numerical solution. Our approach is based on (a) a stabilized variational formulation of the trans-
port operator, (b) on so-called sparse tensor products of two hierarchic families of finite element spaces in H 1ðDÞ and in
L2ðS2Þ, respectively, and (c) on wavelet thresholding techniques to adapt the discretization to the underlying problem. An a

priori error analysis shows, under strong regularity assumptions on the solution, that the sparse tensor product method is
clearly superior to a discrete ordinates method, as it converges with essentially optimal asymptotic rates while its complex-
ity grows essentially only as that for a linear transport problem in Rn. Numerical experiments for n ¼ 2 on a set of example
problems agree with the convergence and complexity analysis of the method and show that introducing adaptivity can
improve performance in terms of accuracy vs. number of degrees even further.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

We are concerned with the numerical solution of the stationary monochromatic radiative transfer equation
[1] on a bounded Lipschitz domain D � Rn; n ¼ 2 or 3, with fully absorbing cold walls without scattering.

We identify a direction s with a point on the sphere S2 and are looking for the intensity uðx; sÞ, satisfying
0021-9

doi:10.

* Co
E-m

ethz.ch
s � rxuðx; sÞ þ jðxÞuðx; sÞ ¼ jðxÞf ðxÞ; ðx; sÞ 2 D� S2; ð1Þ
uðx; sÞ ¼ 0; x 2 oD; s � nðxÞ < 0; ð2Þ
nðxÞ is the outer unit normal on the boundary, j P 0 the absorption coefficient, f P 0 the blackbody
intensity.
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Regarding the direction s as a mere parameter, the equation can be solved by line integration for any given
position ðx; sÞ. However, as the equation is stated in five (respectively four, for n ¼ 2) dimensions, this strategy
is too expensive in order to compute the intensity field uðx; sÞ with a fine resolution.

Popular methods to solve the radiative transfer problem are, apart from Monte Carlo schemes, the method
of spherical harmonics (in particular the P 1 approximation) or the discrete ordinates method. Overviews of
numerical methods for radiative transfer can e.g. be found in [1] or [2] and some recent developments in [3].

The method of spherical harmonics is based on a semi-discretization in the solid angle by expanding the
intensity into a truncated series of spherical harmonics, which leads to a coupled system of equations in space
only. For the P 1 approximation, the equations (1) and (2) boil down to a diffusion equation. The P N approx-
imation is only suitable when the intensity function is near-isotropic, as the approximation rate with respect to
the number of spherical harmonics is very poor for highly non-isotropic functions (cf. [1, Sect. 15]).

In the discrete ordinates method (often referred to as SN ), the equation is solved for N fixed directions. The
method is very popular due to its simplicity, but suffers from so-called ray effects which require a fine angular
resolution if localized emissive areas are present.

In most applications, the systems of equations arising from a P N - or an SN approximation are solved with
finite difference or finite element schemes. In [4], for example, a least squares formulation is discretized with
spherical harmonics in the solid angle and finite elements in space. Kanschat [5] uses a Petrov–Galerkin FE
discretization with piecewise constant functions in the solid angle and streamline diffusion stabilization in
the physical domain D.

The boundary value problem (1) is posed on an nþ 2-dimensional domain. Thus, uniform refinement of
standard finite element spaces incurs a drastic growth of the number of unknowns by a factor of 2nþ2 for a
moderate gain in extra accuracy. We will present a method to overcome this”curse of dimensionality” –
already observed in [6] – for radiative transfer problems with sufficiently smooth absorption coefficients
jðxÞ and blackbody intensity f ðxÞ. For problems that lack the required smoothness, we propose an adaptive
algorithm, based on a posteriori wavelet thresholding techniques, to reduce the number of degrees of freedom.
Unlike some other methods for radiative transfer, our method does not require j to be strictly positive.

The paper is structured as follows: in Section 2, we describe the problem setting and the scaled least squares
variational formulation used for deriving our method. Such stabilized formulations have been used e.g. in [7]
and in particular for the linear Boltzmann equation arising from the neutron transport problem in [8,4] or [9].
While in [8,9] the absorption coefficient is assumed to be bounded away from zero and the authors in [4] opti-
mize the scaling parameter to balance the absorption and scattering effects for constant coefficients, we tailor
the scaling parameter to provide coercivity and continuity estimates for partially degenerate absorption coef-
ficient functions.

Section 3 presents the Galerkin discretization and the construction of the approximation spaces. A tensor
product of piecewise linears in D and piecewise constant functions in the solid angle plus a one-point quad-
rature rule gives a formulation equivalent to the ‘‘discrete ordinates method” known to be computationally
expensive. Our new idea in constructing approximation spaces is to combine only tensor products of selected

‘‘detail” spaces in two hierarchies of finite element spaces, one in the physical domain D and one in the solid
angle S2, respectively. The exclusion of most of the possible combinations of detail spaces in our construction
without compromising asymptotic convergence rates is, in fact, the key to breaking the curse of dimensionality
in this kind of problems.

The core development of this paper is contained in Sections 3.1–3.3. There, we detail the sparse tensor prod-
uct method, applied to the radiative transfer equation, including the two wavelet bases we use in D and in S2,
respectively. Our approach is inspired by the idea of hyperbolic cross approximations and by so-called sparse
grids. The latter were introduced in the finite element context by Zenger in [10]. Sparse grids have been used
for solving a wide range of high-dimensional problems, such as e.g. numerical integration [11], the N-electron
Schrödinger-equation in quantum chemistry [12], elliptic [13,14] and parabolic [15] partial differential equa-
tions, high-order FE methods [16] or integral equations [17] among others.

Our sparse tensor product method reduces the total number of degrees of freedom to the number of degrees
of freedom in physical space D only (up to logarithmic terms). We prove this for solutions of sufficient
smoothness and for sparse tensor products of FE-spaces with uniform mesh refinement in D and in S2. Even
without adaptivity, therefore, our sparse tensor method avoids the complexity of nþ 2-dimensional problems
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without compromising convergence orders, at least for sufficiently smooth solutions. For problems like light
beams, however, the sparse tensor product method is not optimal in the sense of a best N-term approximation

[18]. In order to also cover this class of problems, where the smoothness requirement is not fulfilled, we
describe a particular adaptive sparse tensor product method in Section 4.

Adaptive sparse grid methods have for example been applied to the Helmholtz equation [19], elliptic PDE’s
[13] or a singular perturbation model [20]. More general adaptive wavelet methods can e.g. be found in [21–24]
and the references cited therein. Starting from the sparse tensor product space described in Section 3.1, we
iteratively update the space in order to obtain a solution that is close to a best N-term approximation. We
emphasize that straightforward adaptive approaches in radiative transfer, as e.g. [5], where in a FE method
with a fixed discretization in the solid angle the mesh in the physical domain D is refined according to a pos-

teriori error indicators, will improve the constant in complexity estimates but can not break the curse of
dimensionality in the solution of the nþ 2-dimensional problem. The sparse, adaptive tensor finite element
method introduced here achieves this by adaptively resolving D� S2 – interactions in multiscale representations

of the solution in D and S2, respectively.
Section 5 contains numerical results. We compare the full tensor product approximation, which, in this

case, is equivalent to a discrete ordinates method, to the sparse tensor product method with uniform mesh
refinement and with the adaptive sparse tensor product method for a set of model problems.

Finally, in Section 6, we comment on extending the present approach to higher order and also on applying
sparse tensorization to the P N -family of methods.

2. Variational formulation

The non-scattering stationary monochromatic radiative transfer equation on a bounded Lipschitz domain
D � R3 with fully absorbing cold walls reads:
ðs � rx þ jðxÞÞuðx; sÞ ¼ jðxÞf ðxÞ in D� S2; ð3Þ
uðx; sÞ ¼ 0 on C�ðsÞ; s 2 S2; ð4Þ
where C�ðsÞ denotes the inflow boundary defined by
C�ðsÞ :¼ fx 2 oD : s � nðxÞ < 0g � oD; s 2 S2: ð5Þ
If we assume that ouðxÞ
oz ¼ 0, where x ¼ ðx; y; zÞ0 2 eD � R; eD � R2, the equation reduces to a 2-dimensional

problem ðn ¼ 2Þ for uðx; sÞ ¼ uð~x; sÞ; ~x ¼ ðx; y; 0Þ0; in physical space. In that case, we ignore the third compo-
nent of the inner product s � rxu.

When regarding s as a mere parameter, the radiative transfer equation (3)–(4) reduces to a linear convection
equation for the directed intensity uð�; sÞ. It is well known that its standard Galerkin discretization by means of
continuous trial functions is unstable (e.g. [25]). As we want the variational formulation to be independent of
the discretization used and applicable to transparent media (i.e. j ¼ 0), we opt for the stabilized variational
formulation proposed in [4],

i.e. we seek u : D� S2 7!R as the minimizer of the quadratic least squares functional
JðuÞ :¼ ð�ðs � rxuþ ju� jf Þ; s � rxuþ ju� jf ÞL2 ; ð6Þ

where
�ðxÞ ¼
1; jðxÞ < j0;

1
jðxÞ ; jðxÞP j0

(
ð7Þ
with j0 � 0:134 (for details see [26]). In (6), we adopted the notation
ðu; vÞL2 :¼ ðu; vÞL2ðD�S2Þ ¼
Z

D

Z
S2

uvdsdx ð8Þ
and the associated L2-norm will be denoted by k � k.
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For the proper statement of this minimization problem as well as of the FEM below, we define the Hilbert
spaces
V :¼ fu 2 L2ðD� S2Þ : s � rxu 2 L2ðD� S2Þg: ð9Þ

We equip V in (9) with the norm k � kS, defined by
kuk2
S :¼ ks � rxuk2 þ kuk2 ð10Þ
and introduce the subsets
V0 :¼ fu 2 V : u ¼ 0 on C�ðsÞ; s 2 S2g: ð11Þ

Here, the homogeneous essential boundary condition on C�ðsÞ is well defined as V0 is a closed, linear subspace
of V due to the continuity of the corresponding trace operator, cf. [27,28] or [29, Chapter XXI, Section 2].

Next we introduce the bilinear form
aðu; vÞ :¼ ð�s � rxu; s � rxvÞL2 þ ð�s � rxu; jvÞL2 þ ð�ju; s � rxvÞL2 þ ð�ju; jvÞL2 ð12Þ

and define the ‘‘source” functional
lðvÞ :¼ ð�j2f ; vÞL2 þ ð�jf ; s � rxvÞL2 : ð13Þ

Then the resulting linear variational problem reads: Seek ~u 2 V0 such that
að~u; vÞ ¼ lðvÞ 8v 2 V0: ð14Þ

For n ¼ 2 we further require that there is a constant C > 0 such that
ks � rxukP Ckuk: ð15Þ
Then the following theorem holds [4].

Theorem 2.1. For every non-negative and bounded j the bilinear form aðu; vÞ is continuous on V � V and coercive

on V0 � V0 equipped with the norm k � kS . In particular, for every f 2 L2ðD� S2Þ,there exists a unique weak

solution ~u 2 V0 of the stabilized variational form (14) of the radiative transfer problem (3) and (4).

Although the proofs in [4] are restricted to piecewise constant absorption coefficients, the extension to non-
constant coefficients is straightforward (see e.g. [26]).

As the bilinear form að:; :Þ is symmetric and positive definite on V0, the expression
kukA :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aðu; uÞ

p
ð16Þ
defines a norm on V0, to which we will refer as ‘‘energy”, or AðD� S2Þ norm below.

Remark 1. In this paper, we restrict ourselves to non-scattering radiative transfer and the least squares
formulation stated above. However, the (adaptive) sparse tensor product method could also be applied to
other variational formulations and to problems that consider scattering effects (see e.g. [4] or [9]).
3. Galerkin discretization

From now on, the variational problem (14) will be considered on the space
V 0 :¼ H 1;0ðD� S2Þ \ V0; H 1;0ðD� S2Þ ¼ H 1ðDÞ � L2ðS2Þ: ð17Þ

Since V 0 is a proper, closed subspace of V0 (and, hence, of V), the variational problem (14), restricted to V 0,
admits a unique weak solution �u 2 V 0. In what follows, we shall assume that the two weak solutions, ~u 2 V0 and
�u 2 V 0, of (14) coincide and denote this solution by u. This is a regularity assumption stating that the weak
solution u 2 V of (3) and (4) belongs, in fact, to H 1ðDÞ � L2ðS2Þ. Note that this assumption precludes line dis-
continuities of u in D which may arise due to transport along rays of discontinuous boundary data. The Galer-
kin discretization of (14) is obtained, as usual, by restricting u ¼ ~u and v in the weak formulation (14) to a
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one-parameter family of finite dimensional subspaces fV L
0gL of V0, where the superscript L will denote ‘‘level”

of mesh refinement. This yields
uL 2 V L
0 : aðuL; vÞ ¼ lðvÞ 8v 2 V L

0 : ð18Þ

Due to the coercivity and continuity of að�; �Þ on V0 � V0, (18) admits a unique solution which satisfies the
Galerkin orthogonality
8v 2 V L
0 : aðu� uL; vÞ ¼ 0: ð19Þ
As a consequence of (19) and of Theorem 2.1, the error eL ¼ u� uL is quasioptimal in the k � kS-norm (10), i.e.
for every subspace V L

0 of V 0 which is closed in V 0 with respect to the k � k-norm we obtain
ku� uLkS 6 Cðj;DÞ inf
vL2V L

0

ku� vLkS : ð20Þ
We exploit this stability to construct sequences V L
0 of subspaces of V 0 by sparse tensorization. Since the com-

putational domain D� S2 is a cartesian product of domains, we build V L
0 out of tensor products of ‘‘compo-

nent” finite element spaces in D and in S2, respectively. Note, however, that due to the s dependence of the
Dirichlet boundary C�ðsÞ � oD, the subspaces V L

0 will generally not be of tensor product type, once the bound-
ary condition (4) is imposed.

Let us start by giving the construction of the component spaces without boundary conditions. To this end,
we equip the domain D with a triangular ðn ¼ 2Þ or tetrahedral ðn ¼ 3Þ mesh T 0

D, and the sphere with a mesh
T 0

S2 consisting of spherical triangles. The hierarchic mesh sequences T l
D; T

l
S2 ; l ¼ 1; . . . ; L; are then obtained by

uniform dyadic refinement of the coarse meshes (see Fig. 1).
On the hierarchic mesh sequences, we specify finite element (FE) spaces. In physical space D, the finite ele-

ment space V L
D :¼ Sp;1ðD; T L

DÞ � H 1ðDÞ consists of piecewise polynomial functions of degree p P 1 on the fin-
est triangulation T L

D which are continuous in the physical domain D. In the solid angle s 2 S2, we use
V L

S2 :¼ Sq;0ðS2; T L
S2Þ � L2ðS2Þ of discontinuous, piecewise polynomials of degree q P 0 on the spherical trian-

gles of T L
S2 . In the implementation ahead, we realized the simplest case p ¼ 1 and q ¼ 0.

Based on the FE spaces V L
D and V L

S2 in the ‘‘component domains” D and S2, we define the tensor product
finite element space V L

0 � V 0 on the cartesian product mesh T L
D � T L

S2 at refinement level L by
V L
0 :¼ V L \ V0 ð21Þ
with
V L :¼ V L
D � V L

S2 ¼ Sp;1ðD; T L
DÞ � Sq;0ðS2; T L

S2Þ: ð22Þ
The Galerkin discretized problem then reads: find uLðx; sÞ 2 V L
0 such that
aðuL; vLÞ ¼ lðvLÞ 8vL 2 V L
0 : ð23Þ
Fig. 1. Mesh hierarchies used in the sparse tensor product space.
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Let aiðxÞ; i ¼ 1; . . . ;ML ¼ dimV L
D, be a basis of V L

D and bjðsÞ; j ¼ 1; . . . ;NL ¼ dimV L
S2 , a basis of V L

S2 .

Remark 2. Note already at this stage the essential feature that the basis function aiðxÞ and bjðsÞ of the

‘‘component” spaces V L
D and V L

S2 are assumed to be independent of L. This means that spaces and bases in D and

S2 are assumed to be hierarchical which rules out, for example, the use of classical ‘‘hat” function finite element
bases in D.

The approximate intensity uL 2 V L can be expressed in the tensor product form
uLðx; sÞ ¼
XML

i¼1

XNL

j¼1

uijaiðxÞbjðsÞ 2 V L: ð24Þ
Then (23) leads to a linear system of equations for the ML � NL unknowns uij.
A natural choice of bases in the simplest case p ¼ 1 (continuous, piecewise linear elements in D) and q ¼ 0

(discontinuous, piecewise constant elements in S2) is

	 locally supported piecewise linear ‘‘hat functions” for V L
D that is aiðxjÞ ¼ dij, where fx1; . . . ; xMLg is the set of

vertices of T L
D,

	 and the characteristic functions of the triangles of T L
S2 as bj; j ¼ 1; . . . ;NL.

In order to impose the boundary conditions in our implementation, which uses p ¼ 1 and q ¼ 0, we take the
nodal basis in physical space and the characteristic functions of triangles T 2 T L

S2 as a basis in the solid angle
S2. We then set all degrees of freedom uij to zero, if i corresponds to a ‘‘inflow” boundary node xi 2 C�ðsÞ for
s 2 suppðbjÞ � S2.

As mentioned previously, the Galerkin tensor product discretization with q ¼ 0 is equivalent to a discrete
ordinates method [1], if a one-point quadrature rule is applied in the solid angle. The discrete ordinates
method is usually referred to as SN , where N ¼ N L is the number of discrete ordinates [1, Section 16]. As
the number of degrees of freedom is roughly ML � N L, where both ML and NL are the number of basis functions
of a discretization in D and in S2, respectively, this method is not able to overcome the curse of dimensionality
even with adaptive mesh refinements in D and in S2.

A first attempt is to try and keep both N L and ML small by picking adapted bases that offer a good repre-
sentation of the solution with only a few degrees of freedom. The construction of such basis functions can be
pursued via local adaptive mesh refinement starting from T 0

D and T 0
S2 . Then, the ultimate trial and test func-

tions are built according to (24). The limitations of this approach are evident: since the space V L
S2 is expected to

provide good resolution of the radiation everywhere, T L
S2 will usually have to be a fairly uniform mesh.

Yet, using all the product basis functions aiðxÞbjðsÞ; i ¼ 1; . . . ;ML; j ¼ 1; . . . ;N L, as in (24) may not be
necessary at all, because only a few of them may really make a significant contribution to representing the final
solution. Hence, a promising approach to obtaining efficient trial spaces is to select a few significant product

basis functions of the form aiðxÞbjðsÞ and let them span V L. The component basis functions ai and bj may be
chosen from large, even infinite, sets, which will not translate into prohibitively large discrete problems. This
idea underlies the present approach to the Galerkin discretization of the radiative transfer problem which is
based on sparse tensor products of the hierarchic component finite element spaces V L

D and V L
S2 . In the following,

we shall discuss two choices of the sparse tensor product space – the a priori selection of combinations of hier-

archic basis functions, and the a posteriori, adaptive selection of such combinations.

3.1. Sparse tensor product space

The selection of significant product basis functions needs to follow strict rules in order to overcome the
curse of dimensionality without compromising accuracy. Such a set of rules for selecting basis functions a pri-

ori is offered by the framework of sparse grids [10,30]. In the following, we adapt these ideas to construct
sparse tensor products of FE spaces in H 1;0ðD� S2Þ ’ H 1ðDÞ � L2ðS2Þ. To do so, we have to exploit the hier-

archic, multilevel structure of the sets faigi and fbjgj of basis functions. They have to allow a partitioning into
subsets associated with different levels of resolution. Crudely speaking, the level of a basis function corresponds
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to its importance for approximating smooth functions: basis functions on level 0 make significant contribu-
tions, those on levels with a large index do not contribute much.

The hierarchic, multilevel structure of the finite element spaces will naturally arise from the nested triangu-
lations T l

D and T l
S2 ; l ¼ 0; 1; 2; . . . ;. On these, we define the corresponding nested sequences of finite element

spaces
V l
D :¼ Sp;1ðD; T l

DÞ � H 1ðDÞ; V l
S2 :¼ Sq;0ðS2; T l

S2Þ � L2ðS2Þ: ð25Þ
Here, Sp;1ðD; T l
DÞ denotes the continuous, piecewise polynomial functions of degree p P 1 on T l

D and
Sq;0ðS2; T l

S2Þ denotes the space of possibly discontinuous, piecewise polynomial functions of degree q P 0.
These sequences of spaces are, in turn, nested, and there are so-called ‘‘detail spaces” W l

D;W
l
S2 such that
V l
D ¼ W l

D 
 V l�1
D ; V l

S2 ¼ W l
S2 
 V l�1

S2 ; ð26Þ
where 
 is the orthogonal direct sum with respect to the corresponding L2 inner products.
Iterating (26), we see that for l P 1 the spaces V l

D and V l
S2 possess an L2- orthogonal decomposition into the

detail subspaces W l
D and W l

S2 , respectively:
V l
D ¼ 


l

i¼0
W i

D; V l
S2 ¼ 


l

i¼0
W i

S2 ; ð27Þ
where we set, for notational convenience W 0
D :¼ V 0

D and W 0
S2 :¼ V 0

S2 , respectively. With these definitions, the
full tensor product space V L � H 1ðDÞ � L2ðS2Þ at mesh refinement level L is easily seen to coincide with
V L ¼ V L
D � V L

S2 ¼ 

06l1;l26L

W l1
D � W l2

S2 : ð28Þ
We shall consider the sparse tensor product space bV L � V L defined by
bV L :¼ 

06l1þl26L

W l1
D � W l2

S2 : ð29Þ
This means that basis functions of level l in subspaces in D are tensorized only with basis functions in S2 up to
level L� l and vice versa, see Fig. 2 for an illustration. We set
Fig. 2. Component spaces of the sparse tensor product space bV L (for L ¼ 3).
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V L
0 :¼ V L \ V0; bV L

0 � bV L \ V0: ð30Þ

A simple counting argument also shows that
dimV L
0 ¼ OðNLMLÞ; cN L :¼ dimbV L

0 ¼ OðN L log ML þML log NLÞ ð31Þ

as L!1.

3.2. Approximation properties

Since the sparse tensor product space bV L is substantially smaller than the full tensor product space V L,
accuracy may be lost. We shall now estimate the rate of convergence of the sparse Galerkin approximations
to u which show that, at least for smooth solutions, both spaces achieve the same asymptotic convergence
rate.

To this end, we define the L2-projection operators P l
D : L2ðDÞ ! V l

D and P l
S2 : L2ðS2Þ ! V l

S2 with the conven-
tion that P�1

D ¼ P�1
S2 ¼ 0. Then the projector bP L onto the sparse tensor product space of level L can be

expressed as telescopic sum of projections onto products of the ‘‘detail” component spaces
bP Luðx; sÞ ¼
X

06l1þl26L

ðP l1
D � P l1�1

D Þ � ðP l2

S2 � P l2�1

S2 Þuðx; sÞ: ð32Þ
The projection P L ¼ P L
D � P L

S2 onto V L can be represented analogously, if the summation extends over
0 6 l1; l2 6 L instead.

In order to describe the approximation properties of the sparse tensor product space bV L, we follow [17,15]
and introduce anisotropic Sobolev spaces with fractional derivatives. We start by defining, for m; n 2 N0, the
anisotropic Sobolev spaces
H s;tðD� S2Þ :¼ H sðDÞ � HtðS2Þ; ð33Þ

which can, for integer values of s and of t, equivalently be defined by
fu 2 L2ðD� S2ÞjDa
xDb

s u 2 L2ðD� S2Þ; 0 6 jaj 6 s; 0 6 jbj 6 tg; ð34Þ

where for a 2 Nn

0; Da
x denotes the ath weak derivative with respect to x 2 D; we denote its order by

jaj ¼ a1 þ � � � þ an. Analogously, for b 2 N2
0, Db

s denotes the weak derivative with respect to s 2 S2 and we de-
note its order jbj ¼ b1 þ b2.

We equip the anisotropic space with the norm
kuk2
Hs;t :¼

X
0 6 jaj 6 s

0 6 jbj 6 t

kDa
xDb

s uk2
L2ðD�S2Þ:

ð35Þ
For arbitrary s; t P 0, we define Hs;tðD� S2Þ by tensorization and interpolation.
For functions uðx; sÞ 2 H 1;0ðD� S2Þ that are sufficiently smooth, the following theorem gives crucial

approximation properties of the sparse grid space, see [26] for the proof.

Theorem 3.1. Under the assumption that p ¼ qþ 1 P 1 and that u 2 H pþ1;pðD� S2Þ, the best-approximation in

the full tensor product space V L satisfies the asymptotic error estimate
inf
v2V
ku� vkA K ku� P LukS K ku� P LukH1;0ðD�S2Þ ð36Þ

K hp
LkukðHpþ1;0\H1;qþ1ÞðD�S2Þ ð37Þ
and best-approximation in the sparse tensor product space bV L satisfies the error estimate
inf
v2bV ku� vkA K ku� bP LukS K ku� bP LukH1;0ðD�S2Þ ð38Þ

K hp
Lj log hLjkukHpþ1;pðD�S2Þ: ð39Þ
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The number of degrees of freedom required for these solutions behaves, as L!1, in the full tensor product
spaces and in the sparse tensor product spaces, respectively, as
dimðV L
0Þ � NLML and dimðbV L

0Þ � N L log ML þML log N L: ð40Þ

Here, � and K indicates equivalence up to constants which may depend on p; s, etc. but which are indepen-
dent of hL and of N L;ML as L!1.

We see that, up to a logarithmic factor, the convergence rates attainable with the full and the sparse tensor
product discretizations are identical, while the number of degrees of freedom in the sparse tensor product
space is, again up to logarithmic factors, the same as that of the component spaces. In effect, the use of the
sparse tensor product space bV L

0 in (18) reduces the FEM complexity from 3 + 2-dimensional domain to essen-
tially that of a FE computation in a 3-dimensional domain while retaining (up to logarithmic terms) the
asymptotic rate of convergence provided that u 2 V0 is sufficiently smooth.
Fig. 3. Index sets IðT 0
DÞ and bI ðT 1

DÞ.

Fig. 4. Index set IðT 1
DÞ.
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This cannot be guaranteed for general absorption and emission data. However, even if the solution does not
satisfy the regularity requirements needed for the approximation rates stated above, in most regions of the
product domain, the solution will be sufficiently smooth. So, even in these cases the sparse tensor product
space is a suitable initial guess based on which a space with better approximation properties can be constructed
by adaptive wavelet thresholding techniques (see Section 4).

3.3. Wavelet finite element bases

Any implementation of the sparse tensor product method does require bases of the multilevel ‘‘detail” sub-
spaces W l

D;W
l
S2 . As we already indicated in Remark 2, the usual ‘‘hat” function finite element shape functions

are not hierarchical and therefore unsuitable to realize a sparse tensor product method. Best suited for our
purposes are either hierarchical or wavelet finite element bases. The latter offer the following important advan-
tages over the former:
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(a) wavelets exhibit vanishing moments which allows to characterize the regularity of the intensity u in terms
of the coefficient decay in its wavelet expansion. This is the basis for using thresholding of wavelet coef-
ficients to steer adaptive refinements in both, D and S2, simultaneously,

(b) (not exploited or addressed yet in the present paper) for scattering operators that are non-local on S2,
wavelet type basis functions allow for compression of the corresponding stiffness matrices without sac-
rificing convergence orders which means that even in this case the computational costs are of order
OðN log M þM log NÞ, where M is the number of degrees of freedom in physical space and N is the num-
ber of degrees of freedom in solid angle.
Fig. 8. Piecewise linear FE wavelet.

Fig. 9. Haar wavelet basis functions on spherical triangle subdivided into four triangles T 1; . . . ; T 4.

Fig. 10. Refinement of a degree of freedom in 2D space.



Fig. 11. Parents–children relationship of Haar wavelet functions on nested triangulations on the sphere.
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to the active set
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of freedom to the active set

Add all coarser degrees of
freedom of active degrees

k=0?

Compute the solution on the
active set of degrees of
freedom

EndSelect degrees of
freedom with wavelet
coefficients
above given threshold
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Compute solution
on

L, C

NO YES
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Fig. 12. Flowchart of the algorithm.
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To date, several constructions of wavelet FE in general domains D are available. In particular, we use in D

the isotropic, piecewise linear and continuous finite element wavelet basis described in [31]. They are con-
structed level-wise. On level 0, the basis functions wm

0 ðxÞ; m 2 IðT 0
DÞ, are the standard hat functions on the

coarsest mesh. With IðT l
DÞ we denote the index set of vertices of the mesh T l

D and with bI ðT l
DÞ the index

set of vertices of T l
D that do not belong to T l�1

D (see Figs. 3 and 4).
On a higher level l > 0, the construction of the wavelet functions wm

l ðxÞ;m 2 bI ðT l
DÞ, is based on the meshes

T l
D and T l�1

D . For j 2 bI ðT l
DÞ, we define /j

lðxÞ to be the hat function of vertex j on mesh T l
D.

We now construct a family of functions hi
lðxÞ 2 S1;1ðT l

DÞ; i 2 IðT l�1
D Þ; that satisfy ðhi

l;/
k
l�1ÞL2ðDÞ ’ dik.

As it can easily be verified, the piecewise linear functions hi
lðxÞ with
Fig. 13
active.
hi
lðvÞ ¼

14; v is vertex xi of mesh T l�1
D

�1; v is neighboring vertex of xi on mesh T l
D

0; v is any other vertex of mesh T l
D

8><>: ð41Þ
fulfill this condition. Examples of the functions /k
l�1ðxÞ;/

j
lðxÞ and hk

l ðxÞ are displayed in Figs. 5–7.
The wavelets on level l are then obtained by
. Coarser degrees of freedom in 2D space that have to be contained in the mesh when a degree of freedom on the finest level is

Fig. 14. Active degrees of freedom in 2D space after refining a degree of freedom on level 3.
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wm
l ðxÞ ¼ /m

l ðxÞ �
X

k2IðT l�1
D Þ

ð/m
l ;/

k
l�1ÞL2ðDÞ

ðhk
l ;/

k
l�1ÞL2ðDÞ

hk
l ðxÞ; m 2 bI ðT l

DÞ: ð42Þ
An example is shown is Fig. 8. With W j
D ¼ spanfwm

j ;m 2 bI ðT j
DÞg, V j

D ¼ spanfwm
i ; 0 6 i 6 j; m 2 bI ðT i

DÞg,
they fit into the framework of Section 3.1.

The functions
wm

l ðxÞ
kwm

l k
;m 2 bI ðT l

DÞ; l 2 N, form a Riesz basis for L2ðDÞ, whereas the scaled functions
~wm

l ðxÞ ¼ 2�l wm
l ðxÞ
kwm

l k
; l 2 N;m 2 bI ðT l

DÞ form a Riesz basis for H 1ðDÞ (see e.g. [24] and the references therein).

As a consequence, in a wavelet decomposition of
u ¼
X
l;m

ulm
~wl

m 2 H 1ðDÞ ð43Þ
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Fig. 15. Blackbody intensity f ðxÞ of Example 1.
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the size of a coefficient ulm provides direct information about the contribution of the corresponding basis func-
tion ~wl

m with respect to the H 1ðDÞ-norm.
On unstructured, triangular meshes on S2, we use agglomerated Haar wavelets (see e.g. [32]) that are

slightly adapted for the sphere. As we use piecewise constant functions, the number of degrees of freedom cor-
responds to the number of spherical triangles.

On refinement level 0 in S2; vn
0 are the characteristic functions on the triangles T n of the coarsest triangula-

tion. On higher levels l > 0, the basis functions vn
l are based on the meshes T l

S2 and T l�1
S2 , where n 2 index set

on level l. The support of vn
l is a triangle on T l�1

S2 . On each sub-triangle T i; i ¼ 1; . . . ; 4,
vn
l ¼ �

1
jT i jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4
k¼1

1
jT k j

q ; ð44Þ
Fig. 17. Size of wavelet coefficients of the full tensor product solution for Example 1.

Fig. 18. cN L ¼ 149120 largest wavelet coefficients of the full tensor product solution for Example 1 at level L ¼ 3.
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where jT ij denotes the area of the spherical triangle T i, see Fig. 9. This ensures L2-orthogonality between the
different levels.

4. Adaptivity

4.1. Theory

The sparse tensor method described in the previous section is a powerful tool to reduce the number of
degrees of freedom in the discretization in the case of an intensity function that is smooth with respect to phys-
ical space as well as solid angle.
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However, for a large number of problems, this a priori choice of degrees of freedom is not asymptotically
optimal in the sense of a best N-term approximation: assuming that we have at hand a wavelet basis
fwkðx; sÞgk2r indexed by a multi-index k in the index set r which spans the space V0, such as the product
wavelet basis constructed in the previous section, the best N-term approximation uK of the intensity uðx; sÞ
with respect to a norm k � k on D� S2 is an approximation of u from the space V K

0 � V0 given by
V K
0 :¼ spanfwk : k 2 Kg ð45Þ
for some index set K � r with cN L ¼ #K ¼ dimV K
0 many indices chosen such that
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Fig. 21. Ex. 1: Relative intensity error in the H 1;0ðD� S2Þ-norm.
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ku� uKk 6 inf
K�r

#K¼N

min
vK2V K

0

ku� vKk: ð46Þ
In other words, the best N-term approximation uK is the best approximation to u if we are willing to spend N

degrees of freedom in D� S2. It is obvious that the best N-term approximation uK of u converges at least as
fast as the sparse tensor product approximation ûL with N ¼ dimbV L

0 degrees freedom. Therefore, by Theorem
3.1, also the best N-term approximation uA

K of the intensity will be able to break the curse of dimension (see
[33] for theoretical background on this). What is more, however, is that the set of solutions u for which uA

K

attains the convergence rate of the sparse tensor product approximation ûL with N ¼ dimbV L
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Fig. 23. Ex. 1: Relative error of the incident radiation in the L2ðDÞ-norm.
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freedom is much larger than H pþ1;pðD� S2Þ – it is typically some Besov space (see [34] and the references there
for details).

Consider a light beam, for example. On the one hand a very fine resolution in the direction of the ray as well
as a fine spatial resolution, where the ray crosses the domain, is required. On the other hand, most degrees of
freedom in physical space as well as in solid angle can be neglected as the intensity there is zero. In some real-
world applications, the intensity will neither be smooth everywhere in the domain nor only consist of a light
beam in vacuum. We therefore opt for an adaptive algorithm that selects the degrees of freedom that are rel-
evant for the given problem. In our implementation, we exploit an important feature of best N-term approx-
imation, namely that a near best N-term approximation in H 1;0ðD� S2Þ can be computed by wavelet

thresholding, i.e. by simply keeping the N largest contributions to the solution, measured in the
k � kH1;0ðD�S2Þ-norm, of the wavelet expansion of u, see e.g. [35, Theorem 4.3.1].
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Fig. 25. Blackbody intensity for Example 2.
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Fig. 26. Absorption coefficient for Example 2.
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Adaptive sparse tensor product methods based on this idea have been applied to various problems, see e.g.
[20–23]. A survey of adaptive wavelet techniques can be found, for example, in [24] and the references there.

Note that while the norm equivalence of the wavelet coefficients to the norm k � kH1;0ðD�S2Þ is rather straight-
forward to establish, the norm equivalence of the wavelet coefficients to the energy norm k � kA is to date open.
Nevertheless, we propose to use thresholding of wavelet coefficients also in the present context and describe
next the implementation of an adaptive discretization based on the heuristic ideas above.

4.2. Implementation

In order to describe the algorithm, we introduce a partial order (‘‘parent–child relationship”) of the basis
functions as follows:
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Fig. 27. Heat flux of Example 2 (reference solution).

Fig. 28. Size of wavelet coefficients of the full tensor product solution for Example 2.
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wðxÞ<Dw0ðxÞ if wðxÞ is a child of w0ðxÞ; ð47Þ
vðsÞ<S2v0ðsÞ if vðsÞ is a child of v0ðsÞ; ð48Þ
wðxÞ;wðxÞ0 being wavelets in physical space and vðsÞ; vðsÞ0 being wavelets on the sphere.
We restrict ourselves to the 2-dimensional case, as the numerical experiments are carried out for n ¼ 2.

Generalizations of all concepts below to n ¼ 3 are straightforward.
In physical space, the children of a basis function corresponding to a given vertex correspond to the edge

midpoints of the neighboring triangles of the vertex (see Fig. 10).
In the solid angle, the children are the twelve basis functions on the next level that overlap with the basis

function to be refined. Fig. 11 shows three parent wavelet functions with their twelve children. Each parent has
twelve children and each child three parents (except on the coarsest level).
Fig. 29. cN L ¼ 149120 largest wavelet coefficients of the full tensor product solution for Example 2 at level L ¼ 3.
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Fig. 30. Incident radiation for Example 2.
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The adaptive algorithm proceeds level-wise (see also Fig. 12).

(1) We start with the computation of the intensity on the coarsest tensor product space.
(2) Select the degrees of freedom where the wavelet coefficients are above a given threshold.
(3) We impose the constraint that complete trees have to be maintained. We therefore ensure that all ances-

tors of the selected degrees of freedom are also included in the set, i.e. if the tensor product of basis func-
tions wðxÞvðsÞ is in the active set, we add recursively all degrees of freedom w0ðxÞv0ðsÞ with
ðw ¼ w0; v<S2v0Þ or ðw<Dw0; v ¼ v0Þ.

(4) We then recompute the solution with the active set of degrees of freedom before.
(5) We threshold the coefficients again.
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Fig. 32. Ex. 2: Relative intensity error in the H 1;0ðD� S2Þ-norm.
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Fig. 31. Net emission for Example 2.
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(6) We now add the degrees of freedom that correspond to refinements in physical space or solid angle of the
active degrees of freedom, i.e. in order to refine a tensor product degree of freedom wðxÞvðsÞ, we add all
degrees of freedom w0ðxÞv0ðsÞ with either ðw0 ¼ w; v0<S2vÞ or ðw0<Dw; v0 ¼ vÞ.

(7) Again, we add all coarser degrees of freedom.
(8) After recomputing the solution, we repeat this procedure on higher levels starting from (2), until the fin-

est level L is reached.

Although the solution has to be computed twice in each iteration step, the method is not too expensive, as a
good initial guess for an iterative solver is available from the previous step.
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Fig. 33. Ex. 2: Relative intensity error in the AðD� S2Þ-norm.
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In Fig. 13, one can see which coarser degrees of freedom have to be active, if the set contains a certain ver-
tex on the finest level. A consistent refinement of a degree of freedom is shown in Fig. 14.

As the set of active degrees of freedom is a subset of the degrees of freedom of a sparse tensor product
space, the adaptive algorithm can be seen as an additional sparsification. However, in extreme examples as
in the one of a narrow light beam, this algorithm allows to go up to much higher levels and the selected degrees
of freedom will have little in common with the original sparse tensor product space.
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Fig. 35. Ex. 2: Relative error of the heat flux in the L2ðDÞ-norm.
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5. Numerical experiments

We test our method on the model circular 2D spatial domain D ¼ fx 2 R2; jxj 6 1g, with different sets of
emission and absorption data. The nested meshes we use for the definition of the multilevel hierarchies are
shown in Fig. 1. In physical space, they consist of 41, 145, 545 and 2113 degrees of freedom, in solid angle
of 20, 80, 320 and 1280 degrees of freedom. In order to compute the solution for a given set of degrees of free-
dom, we compute the stiffness matrices with respect to physical space and solid angle and use the conjugate
gradient method with diagonal preconditioning to solve the linear system. We stop the iteration when the rel-
ative error in the energy norm is smaller than 10�6. We impose the boundary conditions by projecting the solu-
tion onto the subspace described in Section 3 in each iteration step.
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Fig. 37. Heat flux of Example 3 (reference solution).

Fig. 38. Size of wavelet coefficients of the full tensor product solution for Example 3.
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Incident radiation GðxÞ ¼
Z

S2

uðx; sÞds; ð49Þ

and net emission EðxÞ ¼ jðxÞð4pf ðxÞ � GðxÞÞ ð50Þ
are important quantities in radiative transfer simulations. We plot profiles along the (positive) x1-axis of those
quantities for the different methods and levels.

In order to obtain error estimates, we compute reference solutions by line integration of the transport-reac-
tion equation on level 3 in physical space and solid angle. We measure the error of the radiation intensity, the
incident radiation and the heat flux in suitable norms.

We therefore define the following errors:
Fig. 39. cN L ¼ 149; 120 largest wavelet coefficients of the full tensor product solution for Example 3 at level L ¼ 3.
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Fig. 40. Incident radiation for Example 3.
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IA :¼
ku� I refkAðD�S2Þ

kukAðD�S2Þ
; ð51Þ

IH1;0 :¼
ku� I refkH1;0ðD�S2Þ

kukH1;0ðD�S2Þ
; ð52Þ

GL2 :¼
kG� GrefkL2ðDÞ

kGkL2ðDÞ
ð53Þ
and
qL2 :¼
kq� qrefkL2ðDÞ

kqkL2ðDÞ
; ð54Þ
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Fig. 42. Ex. 3: Relative intensity error in the H 1;0ðD� S2Þ-norm.
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Fig. 41. Net emission for Example 3.
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where
qðxÞ :¼
Z

S2

uðx; sÞsds ð55Þ
is the heat flux and I ref ;Gref and qref are the reference solutions of the intensity, incident radiation and heat
flux.

We visualize the efficiency of the (adaptive) sparse tensor product approximation by plotting the error in
the intensity (resp. in the incident radiation or heat flux) versus the number of active degrees of freedom
on levels 0 to 3.
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Fig. 43. Ex. 3: Relative intensity error in the AðD� S2Þ-norm.
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Fig. 44. Ex. 3: Relative error of the incident radiation in the L2ðDÞ-norm.
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Example 1. Illustrates the performance of the sparse tensor product method, when the intensity is a smooth
function with respect to physical space as well as solid angle due to a large absorption coefficient and zero
emission near the boundary. The blackbody intensity is given in Fig. 15, while the absorption coefficient is 10
everywhere in the domain. The resulting heat flux of the reference solution is given in Fig. 16.

In Fig. 17 the absolute values of the coefficients with respect to the tensor product wavelet basis of the full
tensor product solution are displayed, while Fig. 18 shows the cN L largest wavelet coefficients. Here, cN L is the
number of degrees of freedom in the sparse tensor product space. In both figures, the sparse tensor product
space corresponds to the area to the left and above the blue line. As expected, most of the cN L largest
coefficients are contained in the sparse tensor product space.
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Fig. 45. Ex. 3: Relative error of the heat flux in the L2ðDÞ-norm.
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The excellent approximation properties of the sparse tensor product space are also confirmed by the profiles
of the incident radiation and net emission that are shown in Figs. 19 and 20 and the convergence results in
Figs. 21–24: The sparse tensor product approximation is (almost) as accurate as the full tensor product
approximation, while the number of degrees of freedom is reduced from N �M to OðN log M þM log NÞ,
where M is the number of degrees of freedom in physical space D and N the number of degrees of freedom in
solid angle S2.

Example 2 (see Figs. 25 and 26). There is a radiating zone in the center of the domain with an exponential
decay of the blackbody intensity and the absorption coefficient to zero between jxj ¼ 0:2 and roughly
jxj ¼ 0:7. In contrast to Example 1, the absorption coefficient varies between 0 and 10 and energy is emitted
in the center and transported to the boundary of the domain, leading to the heat flux displayed in Fig. 27.
Fig. 47. Size of wavelet coefficients of the full tensor product solution for Example 4.

Fig. 48. cN L ¼ 149120 largest wavelet coefficients of the full tensor product solution for Example 4 at level L ¼ 3.
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Again, the structure of the wavelet coefficients indicates that the solution can be well approximated in the
(adaptive) sparse tensor product space (Figs. 28–30).

The results of the incident radiation and net emission confirm that. With the exception of the adaptive
sparse tensor approximation on level 3, the error increases only slightly when the (adaptive) sparse tensor
product method is applied. Figs. 32–35 show that the sparse tensor product method is clearly superior to the
full tensor product approximation. Introducing adaptivity, we further improve the ratio between the error and
the number of degrees of freedom of the discretization. However, as in particular the results in the net emission
and the heat flux in Figs. 31 and 35 indicate, the selection of the degrees of freedom in the adaptive algorithm
could most likely be improved.
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Fig. 49. Incident radiation for Example 4.
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Example 3. The radiating source is not radially symmetric due to the absorption coefficient, which is given in
Fig. 36. The blackbody intensity f ðxÞ is equal to 1 everywhere in the domain. This results in the non-symmet-
ric heat flux given in Fig. 37. The results are displayed in Figs. 38–45 and confirm that radial symmetry is not
required for the approximation properties.

Example 4. We test the performance of the methods for a problem, where the domain is divided into a
strongly absorbing and a non-absorbing area. We choose the discontinuity not to match with the mesh in
physical space and set the absorption coefficient as follows:
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Fig. 51. Ex. 4: Relative intensity error in the H 1;0ðD� S2Þ-norm.
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jðxÞ ¼
10; x1 < � 1

15
;

0; otherwise:

�
ð56Þ
The blackbody intensity is equal to 1 everywhere in the domain. The resulting heat flux is shown in Fig. 46.
This problem is very hard to solve, as the intensity into directions with a negative s1-component undergoes

a sudden change around x1 ¼ � 1
15 and for x1 < � 1

15 the large emission jf leads to steep gradients at the
boundary. Therefore, we expect that a high resolution in physical space as well as solid angle is required in
these regions. This is confirmed by Figs. 49–54 as all methods fail to produce an accurate solution, with the
error mainly originating from an insufficient resolution at the boundary and the discontinuity.
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Fig. 53. Ex. 4: Relative error of the incident radiation in the L2ðDÞ-norm.
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However, reducing the number of degrees of freedom to the (adaptive) sparse tensor product space hardly
influences the accuracy (Figs. 47–54). Therefore, the adaptive sparse tensor product method has the potential

to include some degrees of freedom from higher levels to improve the accuracy at affordable computational

costs. Due to limitations of the current implementation, we could not carry out such experiments.

Remark 3. The simple diagonally preconditioned CG-solver combined with projection methods to impose the
boundary conditions is not satisfactory, as the number of iterations increases with the number of levels and the
algorithm even does not converge to a relative error of 10�6 on level 3 for some problems. However, as we
focus on the approximation properties of the different spaces, we content ourselves here with that straightfor-
ward method for the moment.
6. Conclusions

We have presented an efficient method to discretize the radiative transfer equation for arbitrary absorp-
tion coefficients without scattering. For solutions of sufficient regularity, the sparse tensor product approx-
imation is (almost) as accurate as the full tensor product approximation, while the number of degrees of
freedom is reduced from N L �ML to OðNL log ML þML log N LÞ, where NL is the number of degrees of free-
dom in physical space D and ML the number of degrees of freedom in solid angle S2. Here, we used only the
lowest degree finite elements, namely p ¼ 1 in D and q ¼ 0 in S2. Even with this lowest order method, in
numerical experiments our sparse tensor product method could achieve an accuracy comparable to that
of the full tensor product method with only a fraction (1–20%) of the degrees of freedom. We obtained with
a simple adaptive refinement strategy based on thresholding the solution’s wavelet coefficients in various
examples an additional reduction in the number of the degrees of freedom by a factor of 10 while still
retaining the accuracy of the scheme. If the radiation intensity u is piecewise smooth, increasing the approx-
imation order to p > 1 in D and to q > 0 in S2 and applying wavelet coefficient thresholding allows a further
reduction of degrees of freedom by selecting the most relevant contributions. The p ¼ 1; q ¼ 0 sparse tensor
method realized here could be viewed as sparse tensor version of the discrete ordinate method SN . Our con-
struction is considerably more general, however: apart from raising p and q, other hierarchies of spaces in
S2, such as the span of spherical harmonics of order at most N, in place of the hierarchic sequence V L

S2 in
(22) could be used.
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